Skip to content
Feynman
Rotating Black Hole · Dark theme · Orange accent
G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}\,T_{\mu\nu}
\frac{d^2 x^\mu}{d\tau^2} + \Gamma^\mu_{\;\alpha\beta} \frac{dx^\alpha}{d\tau}\frac{dx^\beta}{d\tau} = 0
R^\rho_{\;\sigma\mu\nu} = \partial_\mu \Gamma^\rho_{\;\nu\sigma} - \partial_\nu \Gamma^\rho_{\;\mu\sigma} + \Gamma^\rho_{\;\mu\lambda}\Gamma^\lambda_{\;\nu\sigma} - \Gamma^\rho_{\;\nu\lambda}\Gamma^\lambda_{\;\mu\sigma}
K = R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma}
ds^2 = -\left(1 - \frac{2Mr}{\Sigma}\right) c^2 dt^2 - \frac{4aMr\sin^2\!\theta}{\Sigma} c\, dt\, d\phi + \frac{\Sigma}{\Delta}dr^2 + \Sigma\, d\theta^2 + \left(r^2+a^2 + \frac{2a^2Mr\sin^2\!\theta}{\Sigma}\right)\sin^2\!\theta\, d\phi^2
E = h\nu,\;\; \nabla_\mu T^{\mu\nu} = 0,\;\; S = \frac{k_B c^3 A}{4 G \hbar}
Feynman Black‑Hole
•
Pause/Resume
: Space ·
Screenshot
: S ·
Hi‑Res
: H
• WebGL shader simulating lensing, photon ring, and disc beaming.
© Feynman — Visual study.